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This report delved into the realm of resting-state brain activity and its underlying brain dynam-
ics, specifically aiming to reproduce the groundbreaking work of Deco [1]. Their paper introduced
two computational models aimed at providing a theoretical framework for studying brain oscilla-
tions, functional connectivity and synchrony. One model was focused on a single-frequency notion,
wherein brain oscillations are assumed to occur only at one specific frequency. The second model,
however, incorporated the knowledge that brain oscillations can occur at varying frequencies for
different nodes. It is this latter multiple-frequency model that they found was most similar to their
collected magnetoencephalography (MEG) data. This report’s employed methodology encompassed
both Python and MATLAB (for higher reproducibility purposes) and not only reproduced but went
beyond the analysis of the original Deco [1] paper. Through the exploration of bifurcation dia-
grams, nullclines and parameter variations (paying particular attention to noise) we were able to
obtain findings indicative of a more successful multiple-frequency model, whilst uncovering crucial
oversights in the original paper [1]. Our findings show that while the computational model could
be replicated to exhibit behaviour similar to empirical evidence and Deco’s [1] own computations,
significant challenges were encountered in achieving such results, and a comprehensive analysis re-
vealed the model’s overall low replicability. In light of these challenges, we question whether the
Wilson-Cowan model may offer a more reliable alternative. The implications of our findings extend
to the broader understanding of resting-state brain dynamics. By shedding light on the limitations
and challenges in replicating computational models, our study emphasises the importance of trans-
parent reporting and sharing of supplementary code in scientific research, so we can advance our
understanding of resting-state brain activity.

I. INTRODUCTION

A key area within practical biomedical modelling is
the focus on simulating activity in the most intricate
organ in the human body: the brain. Research fre-
quently delves into the complexities of ongoing brain
activity during a range of tasks, as well as our state of
quiescence, often referred to as the “resting state”. In
2017, Deco [1] and their team conducted research into
the fundamental mechanisms underlying envelope cor-
relations in on-going brain activity during such resting-
state. They collected their own empirical evidence via
magnetoencephalography (MEG) in an attempt to re-
create this collected data computationally through the
use of simplified mathematical formulae. Such research
is vital to conduct at this prime time, as our scien-
tific applications begins to shift towards an artificial
intelligence era [2]. When it comes to detailed com-
putational modelling, research thus far focused on the
intricacy of network topologies and their connections,
with many studies successfully replicating electrophys-
iological measurements through the use of mathemat-
ical simplification [3, 4]. The frequency of these ob-
served oscillations relies on time constants, such as the
feedback delay. This describes the excitatory-inhibitory
loops within neural networks, wherein excitatory signals
stimulate the firing of neurons, whilst inhibitory signals
suppress this neuronal activity, consequently meaning
that the difference in effects for the subsequent neu-
ronal activity can introduce delays within our system’s
response. It is therefore crucial to understand these in-
ner dynamics of, say feedback loops and their delays,

to elucidate how our neural circuits process information
and regulate our behaviour [1].

It is this notion that inspired Deco’s [1] research,
as they attempted to investigate locally generated
oscillation interactions at a macroscopic level – hence
their “whole-brain mechanistic model”. The way this is
generally approached is through the use of differential
equations that are able to represent neuronal population
relationships, thus simplifying the complexity of spiking
neuron models and using a “neural-mass model” [5, 6,
7, 1]. A key ingredient when building such models is
a structural brain network characterized by long-range
brain connections with embedded conduction delay,
within which neural populations are placed at each
network node, and assumed to spontaneously oscillate
[6] - this of course bares immediate consequences of
model validity, as the intricacy of neurons becomes
simplified, and assumptions are made. Hence why many
studies compare these models to empirical evidence [6,
1]. However, we cannot simply rely on single studies to
computationally simulate an organ that scientists have
been trying to recreate for years. This abundance of
research has the necessity to be continually reviewed
and replicated.

Studies prior to Deco [1] have also investigated the
electrophysiological basis of resting state networks with
the use of MEG. Brookes [8] demonstrated a significant
correlation between amplitude envelope of neural oscil-
latory signals across brain regions which were spatially
separated, concluding a neural oscillatory basis for func-
tional connectivity in resting state networks. They also
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revealed the vital role that synchronised electrical ac-
tivity plays in coordinating brain regions within specific
networks. Other studies have emphasised the neural
and physiological factors underlying resting state brain
activity, specifically pointing to neural dynamics at each
individual node, looking at the structural connectivity
of the brain’s anatomical network, influence of physio-
logical noise on resting state activity and considerations
of slow fluctuations (<0.1Hz) in physiological signals [7].
Moreover, frequency bands have been a key parameter
varied within studies, as it has been identified that there
is a complex interplay of information exchange across
different frequency bands and brain regions [1, 9].

In considering the practical implications of Deco’s [1]
model, it is essential to recognise the need for further in-
vestigation and validation, given the limitations and still
unanswered questions arising from their study, and of-
ten inherent in biomedical modelling research. The most
notable, and potentially most significant limitation lies
in the simplification of intricate neuronal populations
to achieve the computational model itself. By assum-
ing certain dynamics and connectivity patterns within
brain networks, computational models may fail in cap-
turing the entire complexity of real-world scenarios, po-
tentially leading to disparities between simulated and
observed data. Whilst Deco [1] as well as other scien-
tists [8] have compared their model outputs to empirical
MEG data, their reliance on a single dataset for model
validation poses a constraint on the generalisability of
their findings. This risk emphasises the necessity for
replicating their results, to provide further supporting
evidence for their multi-frequency mechanistic model,
which challenges thus far single-frequency approaches
[10]. Moreover, their paper struggles to address the sen-
sitivity of their model outcomes to parameter choices,
such as noise or global coupling parameters, which raises
concerns about the reproducibility of their findings.

Addressing these limitations through exploring wider
parameter ranges, as well as confirming basic system be-
haviour using Hopf bifurcations, nullclines etc., could of-
fer insights into the robustness of the model and confirm
the optimal settings they observed. Overall, this can
refine our knowledge of biomedical modelling by eval-
uating their proposal against our own findings, which
would thus advance the applicability of the study’s re-
sults to broader contexts in neuroscience and brain re-
search. The following paper therefore aims to reproduce
the findings of Deco [1] using various coding languages
(specifically Python and Matlab) and comparing them
against other computational model outcomes that aim
to imitate resting-state brain activity similar to that of
MEG scans. The model and methodological approach
will covered in the next section, including the assump-
tions which had to be made along the way, followed by
the results obtained and a general discussion of how this
compares to the original Deco [1] paper, their empirical
MEG evidence and the Wilson-Cowan model [11]. Sug-
gestions for future research will also be made.

II. METHODOLOGY

A. The Model

The dynamics of nodes of the brain have been mod-
elled in a way to exhibit a supercritical Hopf bifurcation,
wherein beyond a specific parametric point, a stable
steady state destabilises and periodic stability is estab-
lished. In other words, the complex eigenvalues of the
steady state transition from having a negative real part
to a positive real part. Therefore, with a noise-induced
model, one should see a transition from generally noisy
behaviour to oscillatory behaviour. To model said brain
nodes, we make use of the Stuart-Landau model:

dzj
dt

= z(aj + iωj − |z2j |) + βηj (1)

where,

zj = ρje
iθj = xj + iyj (2)

Through the expansion of zj into the cartesian coor-
dinate system, we get a system of ODEs:

dxj

dt
= (aj −x2

j − y2j )xj −ωjyj +G
∑

Cij(xi−xj) (3)

dyj
dt

= (aj − x2
j − y2j )yj +ωjxj +G

∑
Cij(yi − yj) (4)

Values xj represent the MEG signal of node j. aj
is the parameter used to initiate the bifurcation: for
aj < 0 the system reaches a stable steady state at
(xj , yj) = (0, 0), and at aj ≥ 0 the system showcases
oscillatory behaviour, reaching an unstable steady
state with stable periodicity. A fixed value of a = 0 is
used within the simulations, given that it represents
the system at the bifurcation point where the system
transitions into an oscillatory state. Cij is the struc-
tural matrix, where entry ij represents the fibre density
between regions i and j. G is the coupling strength of
the structural matrix, and a fixed value of G = 0.5 has
been used throughout the report. ωj = ff2π, where ff
is the initial carrier frequency of the node.

After plotting the nullclines and x over time (Figures
3 and 4), we observe analogous behaviour of the system
with that of the Hopf bifurcation (Figure 2), thus verify-
ing that the computational modelling of the system has
been executed correctly, and patterns of behaviour can
be identified. As can be seen in Figure 3, when α reaches
a value of 0 or above, trajectories show a sustained os-
cillatory pattern – displaying a limit cycle periodic in
nature. When α reaches negative values (e.g., -1 as in
Figure 3) we see trajectories increasingly quickly tend
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FIG. 1: Data Analysis Pipeline. After solving the system of ODEs using the Euler-Maruyama method, the
oscillatory solution is band-passed between a specified range. The amplitude envelope of the band-passed

oscillation is low-passed at 0.2Hz. The envelope FC is the Pearson’s correlation between the low-passed amplitude
envelope of each brain region. The instantaneous envelope phase ϕk(t), the angle of the Hilbert-transformed slow

envelope, is then calculated, and is used in the calculation of metastability, the standard deviation of the
Kuramoto parameter R(t) showing global synchronisation; and the coherence connectivity dynamics (CCD), a

correlation between the coherence of the signals from each brain region. Modification of figure in [1].

FIG. 2: A Supercritical Hopf bifurcation plot for
Stuart-Landau model. The system dynamics at the
critical juncture of a = 0, where a is the bifurcation
parameter. Here, the system transitions from a stable
equilibrium to a periodic regime, as evidenced by the
emergence of a limit cycle. This marks the point at

which the system’s behaviour shifts from a static state
to oscillatory motion.

towards a stable, steady state. This significant impact
of the α parameter is also supported in Figure 4.
Wilson and Cowan is an activity-based framework

used to model the dynamics of the brain nodes. It dif-
ferentiates between the excitatory and inhibitory neuron
populations while also considering their refractory pe-
riods [11]. To mathematically describe this model, we
use the following set of ordinary differential equations
(ODEs):

τE
dEi

dt
= −Ei+fE(WEEEi−WEIIi+PE+G

∑
j

CijEj)

(5)

τI
dIi
dt

= −Ii + fI(WIEEi −WIIIi + PI) (6)

The equations define E(t) 5, a time-dependent vari-
able that signifies the proportion of excitatory neurons
firing at any given moment, and I(t) 6, which anal-
ogously represents the firing proportion of inhibitory
neurons. These constants, Cab, represent the synaptic
strength from neurons in population b to those in popu-
lation a, with a, b either being E or I. The functions fa
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FIG. 3: Nullcline subplots. The nullclines of the
Stuart-Landau system of ODEs. (Above) Trajectories
showing the unstable steady state found when aj = 0.
(Below) Trajectories showing the unstable steady state

found when aj = −1. The steady state is at
(xj , yj) = (0, 0) and visualises the supercritical hopf

bifurcation.

FIG. 4: ODE solutions to Stuart-Landau model
without noise. (Top) ODE solutions when a = 0. A

sustained oscillation is observed. (Bottom) ODE
solutions when a = −1, a gradual approach to the

steady state (xj , yj) = (0, 0).

denote the fraction of neurons in population a receiv-

ing at least a threshold excitation level at any moment,
typically modelled as a nonlinear function (sigmoid). In
these equations, τE and τI are the time constants for
the excitatory and inhibitory neurons, respectively, and
Pa reflects external inputs that might be variable over
time.

FIG. 5: A supercritical Hopf bifurcation plot for
the Wilson-Cowan model [11]. The system

dynamics depend on the bifurcation parameters pe and
pi with the presence of Hopf bifurcation and Saddle
nodes. The insets depict the phase plane (E-nullcline
in red and I-nullcline in green) for a parameter set

supporting an ISN with ( pE , pI ) = (0, -0.647) and a
parameter set supporting a sustained oscillation with (
pE , pI ) = (0, -1). Black lines denote numerically
determined trajectories. Modified image from [11].

B. Euler Maruyama method

The Euler-Maruyama (EM) method [12] modifies the
classic Euler algorithm for ordinary differential equa-
tions to accommodate stochastic differential equations,
which are influenced by random perturbations. This
method captures the randomness through a noise term,
typically represented by a Wiener process. The Wiener
process is described by a normal distribution with a
mean of zero and a time-dependent variance, reflecting
the system’s stochastic nature.

The Euler-Maruyama method is appreciated for its
computational simplicity and straightforward imple-
mentation. It differentiates from the deterministic Euler
method by including a stochastic term to account for the
random fluctuations in the system dynamics.

For a general stochastic differential equation:

dxt = a(xt, t)dt+ b(xt, t)dWt, (7)

where xt is the state variable at time t, a(xt, t) rep-
resents the drift coefficient, b(xt, t) signifies the diffu-
sion coefficient, and dWt is the incremental effect of the
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Wiener process, the Euler-Maruyama approximation is
expressed as:

xt+∆t = xt + a(xt, t)∆t+ b(xt, t)
√
∆t ξt, (8)

with ξt being a random draw from a standard nor-
mal distribution. The term

√
∆t ensures that the noise

term’s variance scales with the timestep, in alignment
with the properties of the Wiener process.

FIG. 6: Comparison of the Euler-Maruyama
Approximation with the Analytical Solution. It
compares the true solution of the stochastic differential

equation with its Euler-Maruyama (EM)
approximation over time. The EM method closely
follows the exact trajectory, demonstrating its

effectiveness in approximating solutions with noise
components.

By employing this methodology, we incrementally
simulate the evolution of a system’s state, integrating
both its deterministic trajectory and stochastic varia-
tions.

C. Data Processing

Band-pass filtering allows us to focus on specific
ranges of frequencies, amplifying signals within said
range and allowing more detailed analysis within that
range. Throughout the results section of the report,
ranges of [ffundamental−2Hz, ffundamental+2Hz] have
been used, with ffundamental = 4 : 4 : 28. Additionally,
the amplitude envelope of the band-pass-filtered oscil-
lation at each node is calculated using a Hilbert trans-
formation, s(t) = A(t)cos(ϕ(t)), where A(t) is the am-
plitude envelope, and ϕ(t) is the instantaneous phase.
In some instances, the amplitude envelope is low-pass
filtered at 0.2Hz as to only include slow fluctuations
of the envelope. The low-passed oscillations are used
in the calculation of the envelope functional connectiv-
ity of the nodes, since it has been shown to maximise
resting-state functional connectivity [8].

D. Envelope Functional Connectivity

The envelope functional connectivity between each
node was calculated as the Pearson’s correlations of the
low-pass-filtered amplitude envelopes of each node. The
result is a correlation matrix, where the entry ij repre-
sents the functional connectivity between region i and
j. A larger correlation value would imply a higher cor-
relation between the two regions.

E. Synchronicity and Metastability

Looking at phase activity across regions over time
provides insight into variability in global connectivity.
The Kuramoto order parameter:

R(t) =
|
∑n

k=1 e
iϕk(t)|

n
(9)

with ϕj(t) representing the instantaneous phase of the
band-passed amplitude envelope, is used to visualise
said synchronisation between regions. A larger value
would imply a higher level of global synchronisation.
Metastability can be defined as the standard deviation
of the Kuramoto parameter.

F. Coherence Connectivity Dynamics

The coherence state at time t is given by:

V (t) = {cos(ϕi(t)− ϕj(t)) | ∀i, j = j, i, i ̸= j} (10)

The CCD matrix is defined as:

CCD(T1, T2) =
V (T1) · V (T2)

∥V (T1)∥∥V (T2)∥
(11)

The coherence connectivity dynamics (CCD) com-
pares the time-dependent instantaneous phases of the
amplitude envelopes of the band-passed signals for each
region. The CCD is calculated by the cosine similarity,
at two given time steps, of the cosine of difference be-
tween instantaneous phases between all nodes. With a
range between 0 to 1, a value close to 1 would imply
a higher global connectivity between given time steps,
and 0 the contrary.

III. RESULTS

A. Single Frequency Model

In the single-frequency model, a fixed value of 12Hz
was used as the optimal fundamental frequency as de-
cided in [1], meaning all brain regions are considered to
be generating signals of the same frequency. The cor-
responding solutions of the dynamic system using the
Euler-Maruyama method, with time step, dt = 0.001,
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FIG. 7: Simulated Signal in a brain area before
and after band-pass and low pass filtering. A

blue trace illustrates a 10-second simulated signal from
the Hopf model, tuned to a foundational frequency (ff
= 12 Hz) and a coupling constant (G) of 0.5. Post
band-pass filtering within the 10-14 Hz range, the

signal (depicted in yellow) and its amplitude envelope
(shown in green) were derived via the Hilbert

transform. These visualizations are specific to the Left
Frontal Inferior Orbital Area. A further

transformation, the low-pass filter set at 0.2 Hz, is
applied to the amplitude envelope, yielding a smooth
red curve. Additionally, the phase for the 10-14 Hz
frequency range was calculated for each brain region
through the Hilbert transform. The collective phase
coherence was then quantified using the Kuramoto
Order Parameter. Notably, a parallelism is observed
between the synchrony metric (in blue) and the mean

amplitude (in yellow) of the 10-14 Hz brain wave
oscillations.

and sample rate sample rate = 1/dt, were band-passed
within multiple narrowbands, and the envelopes for each
band-passed oscillation were calculated. As can be seen
in Figure 10, taking into account the mean correlation
seen in Figure 15, band-passing the signals with narrow-
band [10, 14] generates envelope functional connectiv-
ity more correlated between brain regions as well as to
the structural connectivity data, especially for β = 0.5,
validating the findings of Deco et al [1]. The effect
of increasing the noise drastically can also be observed
within the figure; not only does the correlation between
the structural connectivity data and the envelope func-
tional connectivity decrease, but general functional con-
nectivity between regions depletes across band-passed
ranges, indicating that the strength of the noise has

overpowered the dynamic system. However, the mean
correlations between the functional connectivity matri-
ces and the structural connectivity data are generally
low for all β and all band-passing ranges.

FIG. 8: Structural Connectivity Heatmap. The
anatomical connectome data used in all the
simulations was from the AAL atlas [13]

FIG. 9: Functional connectivity Heatmap.
Simulations were run for ff = 12 Hz, dt = 0.001, β =
3 and tmax = 300 secs. Zones of lesser correlation can
be observed compared to the surrounding regions, and
so a ”cross” of lower correlations. This indicates that

there are specific nodes that significantly lack
functional connectivity with other nodes.

As for the CCD, Figure 11 shows the CCD matrix
calculated on signals band-passed through the optimal
range [10, 14], simulated for 10 seconds. Expectedly,
during close time steps, the signals are generally more
synchronous than more distant time steps. This is es-
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pecially notable at the beginning and end of the simu-
lation. What is visible is a checkerboard pattern, repre-
senting the fluctuations in synchrony expressed between
the regions of the brain; the regions of the brain become
more or less synchronous periodically. If the simulation
were run for a longer time period, the checkerboard pat-
tern would become even more prevalent.

B. Multiple Frequency Model

The Multiple Frequency Model adapts to the simula-
tion the knowledge that each brain region can generate
multiple oscillations of different frequencies [1]. Within
the model, each region is simulated at a set of differ-
ent fundamental frequencies ffundamental = 4 : 4 : 28.
Then, the solutions to the system are band-passed
at a more specified narrow-band of [ffundamental −
2, ffundamental + 2] for each ffundamental. The results
of the envelope functional connectivity matrices can be
seen in Figure 13. For β = 0.5, a sudden decrease in
correlation before a general increase between brain re-
gions can be seen with an increased ffundamental, with
ffundamental = 28Hz having the largest general cor-
relation between regions. As expected, with increasing
noise, the relative correlation begins to decrease for most
ffundamental values. Interestingly, with β = 1.5, the
functional connectivity for ffundamental = 8Hz, 12Hz
appears generally higher than those of ffundamental =
16, 20. In comparison to the structural connectivity
data (see Figure 16), the mean correlations for most
band-passing frequencies appear higher than those seen
in the single frequency model, especially for β = 0.5, 1.5.
Additionally, across all β and band-passing ranges, there
is much less of a pattern in relation to a specific range
having a generally larger correlation to the structural
connectivity data; for β = 0.5, the functional connec-
tivity evaluated for ffundamental = 4Hz has the highest
mean correlation to the structural connectivity data. In
contrast, for β = 1.5 and 3, the functional connectivity
matrices at ffundamental = 8Hz and 12Hz respectively
have a higher correlation to the structural connectivity
data.

C. Wilson-Cowan Extension

In our investigation, we have broadened the scope of
the Stuart Landau model by integrating it with the su-
percritical Hopf bifurcation concept within the frame-
work of the Wilson Cowan model [11]. This approach
allowed us to manipulate the carrier frequency of net-
work nodes by modulating timescales, maintaining a
constant ratio between excitatory and inhibitory com-
ponents. The selection of bifurcation parameters pe and
pi, critical for the transition phases of the model, was
meticulously aligned with previous studies [11] to en-
sure consistency with established boundary conditions.
This alignment facilitates a direct comparison with Stu-

art Landau’s model while exploring new dimensions of
neural dynamics.

Our results, derived from applying signal process-
ing techniques analogous to those documented in Deco
et al’s [1] influential work, reveal significant insights
into the frequency-specific behaviour of neural networks.
Through detailed analysis of the envelope frequency and
the metastability of excitatory and inhibitory signals,
we have identified patterns of neural activity. Adjust-
ments to band-pass filtering parameters, beta, and cou-
pling weights further elucidated the complex interplay
between network topology and signal dynamics. This
comprehensive analysis underscores the versatility of
our extended model in simulating a broader spectrum
of neural behaviours, thereby offering a deeper under-
standing of the intricate mechanisms underlying brain
activity. Our findings not only corroborate the robust-
ness of established models but also highlight the poten-
tial for novel theoretical frameworks to contribute to the
evolving narrative of computational neuroscience.

Simulations were conducted with a fine temporal reso-
lution, using a timestep (dt) of 0.001 seconds over a span
of 400 seconds. The simulation incorporated a single-
frequency approach, aligning the timescales of excita-
tory and inhibitory components (τe and τi, respectively)
according to a Hopf bifurcation framework with a scal-
ing factor of 3.5. The analysis encompassed a range of
frequency bands—specifically, 10-14 Hz, 14-18 Hz, and
18-22 Hz paired with noise parameter (β) values to be
set at 0.05, 0.1, and 0.5.

Observations from the simulations indicate that the
correlation strength in the Envelope Functional Connec-
tivity (FC) derived from excitatory signals consistently
surpassed that of the inhibitory FC, as evidenced by
the more intense colours in the corresponding heatmap
visualizations Figure 14. In contrast, the inhibitory sig-
nal patterns displayed greater variability and appeared
to align more closely with the brain’s structural con-
nectivity across all examined β values, a trend that was
maintained across the frequency spectrum (as detailed
in Figure 14).

IV. DISCUSSION

Discrepancies in the assignment of Parameters
Upon the computation and reproduction of multiple fig-
ures, assumptions had to be made for parameters not
previously defined. The time step dt, used in the Euler-
Maruyama integration method, was found to be opti-
mal at 0.001 for larger periods of time. Additionally,
the sample rate used when band-pass and low-pass fil-
tering was defined to be inversely proportional to the
time step to keep the parameters consistent. Because
of the computational cost of simulating for larger peri-
ods of time, the maximum simulated time was reduced
to 300 seconds for the calculation of the envelope func-
tional connectivity matrices and 10 seconds for CCD
matrices.
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FIG. 10: Envelope functional connectivity for single-frequency model. Each row corresponds to a
different noise strength, β = 0.5, 1.5, 3. The highest correlation between nodes is seen with nodes band-passed

between [10Hz, 14Hz] for all noise strengths, but gradually depletes with increased noise.

FIG. 11: Coherence Connectivity Dynamics
(CCD). For ease of computation, parameters were
updated as follows: ffundamental = 12Hz, dt = 0.002,

sample rate = 2000, β = 0.5. An observable
”checkerboard” pattern indicates fluctuations in global

synchrony over time.

Discrepancies in signal processing for the
python and MATLABWhile replicating the method-
ologies outlined in Deco [1], we employed Matlab and
Python to construct a comprehensive brain model.
We encountered distinct challenges while implementing
band-pass and low-pass filters using the Butterworth fil-

ter from the Scipy package [14] in Python, as compared
to Matlab. Specifically, Python’s implementation re-
quired meticulous adjustment of parameters such as the
filter order and the Nyquist frequency, which directly in-
fluence the filter’s performance regarding frequency se-
lectivity and roll-off characteristics. These parameters
are pivotal in achieving the desired signal processing
outcome, making their correct estimation crucial. The
necessity for precise parameter tuning in Python’s Scipy
library starkly contrasts Matlab’s more intuitive signal
processing functions, which tended to abstract some of
the complexities of filter design.
This highlights the inherent differences in signal process-
ing capabilities between Matlab and Python, underscor-
ing the significance of tool selection in computational
research. While Matlab offers a more user-friendly en-
vironment for signal processing tasks, Python requires a
deeper understanding of the theoretical underpinnings
to manipulate signal characteristics effectively. Despite
these challenges, the process of adapting signal process-
ing techniques across different software platforms has
provided valuable insights into the flexibility and pre-
cision required for computational modelling in neuro-
science research.

Noise One of the fundamentally effective factors that
we spotted in the model, which Deco [1] do not dis-
cuss sufficiently in their paper, is the noise parameter
β. This is inherent in creating artificial neural networks,
as the brain has various noise levels throughout. This
noise can arise from intrinsic sources within individual
neurons. An example of such a source is simply a spon-
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FIG. 12: Visualisation of multiple-frequency model. First, the fundamental frequency,
ffundamental = 4 : 4 : 28, is defined the same for all nodes, then the optimal band-pass range is set as

[ffundamental − 2, ffundamental + 2]. Modification of figure in [1].

FIG. 13: Envelope functional connectivity for multiple-frequency model. Each row represents an
increased noise strength, β = 0.5, 1.5, 3 Evidently, the general correlation increases as ffundamental = 4 : 4 : 28

increases, especially with β = 0.5. Increasing the noise sufficiently removes said trends.

taneous neural activity arising from the stochastic fir-
ing of individual neurons, which consequently produces
“background noise” in neural recordings and sometimes
enhances synaptic efficacy and the responsiveness of
cortical cells [15]. Other research has identified that
“channel noise” is triggered by the probabilistic gating
of voltage-dependent ion channels and actually limits
the reliability of neuronal responses to identical stim-
uli – thus indicating how sparse brain activity may be,
purely due to noise. The effects of the noise param-
eter β can be observed in Figures 15 and 16 wherein
structural and functional connectivity were correlated
after a range of bandpassing, and a mean correlation
of the final matrix was taken, to be plotted against the
frequency range. The optimal bandpass that Deco [1]
state is 10-14Hz, was only prevalent when beta = 3 for
the multiple-frequency model (see Figure 16). Although

a consistent pattern of an optimal 10-14Hz can be seen
in the single-frequency model (see Figure 10), we also
observe drastic drops in mean correlation as beta in-
creases. Future research should aim to study the opti-
mal noise parameters for a given computational model
and compare this against empirical data for verification.

Single-Frequency and Multiple-Frequency
Models Both single-frequency and multiple-frequency
models have been simulated with the expectation of
recreating convincing correlations to structural connec-
tivity data. The single-frequency model sets a fixed
initial frequency of 12Hz for each brain region, then
band-passes the signals at different frequency ranges,
with the evaluation that a narrowband of [10Hz, 14Hz]
correlates best both to the findings of Deco as well
as correlating best with the structural connectivity
data. Conversely, with the multiple-frequency model,
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FIG. 14: Comparative analysis of envelope functional connectivity in Wilson-Cowan model [11]. Two
envelope FCs derived from the Wilson-Cowan hopf model under single frequency conditions, showcasing excitatory
(left panel) and inhibitory (right panel) neural signals across three non-overlapping frequency bands, i.e., 10-14
Hz, 14-18 Hz and 18-22 Hz. The frequency dynamics are modulated by adjusting the timescale parameters τe =
0.03/n and τi = 0.08/n, with n = 3.5. The analysis considers three different beta values for noise, namely 0.05, 0.1

and 0.5, each associated with a separate row to explore the model’s behaviour under different noise levels.

FIG. 15: Scatter plot of mean correlation
between the structural connectivity and

functional connectivity of the single-frequency
model. The mean value of Pearson’s correlation

between the structural connectivity of the MEG data
and the functional connectivity of the single-frequency

model for each band-pass narrowband range is
calculated. [10Hz, 14Hz] evidently correlates more to
the MEG data than other band-pass narrow bands for
all β = 0.5, 1.5, 3, but the correlation decreases as β is

increased.

all brain regions were initially fed the same funda-
mental frequency, and the signal was band-passed
with a frequency range specific to the fundamental
frequency; [(ffundamental−2)Hz, (ffundamental+2)Hz]

FIG. 16: Scatter plot of mean correlation
between the multiple-frequency model’s
structural connectivity and functional

connectivity. The same process as seen in 15 is used
but adapted to the multiple-frequency model. A less

coherent correlation is visible, with the optimal
band-pass narrow band changing for every β value.
However, the general correlation between structural
connectivity and functional connectivities is higher

than those seen in the single-frequency model.

for ffundamental = 4 : 4 : 28. Differing from the
single-frequency model, using the envelope functional
connectivity, general correlation seemed to generally
increase with increasing fundamental frequencies,
especially with β = 0.5; however, with varying β, the
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optimal fundamental frequency changed in relation
to correlating best to the structural connectivity.
According to figures 15 and 16, the functional connec-
tivity matrices of the multi-frequency model correlate
better with the structural connectivity than the
single-frequency model. Regions of the brain can
generate signals of multiple frequencies, and so the
conclusion that a model that incorporates the region
generating multiple frequencies correlating to structural
connectivity data makes sense.

Model Comparison The exploration of metastabil-
ity in brain network simulations reveals a noteworthy
distinction in the behaviour of the Stuart-Landau and
Wilson-Cowan models [11] (see Figure 17), particularly
when considering the parameter β as representative of
noise within the system. In its portrayal of inhibitory
signal dynamics, the Wilson-Cowan model displays a
pattern (see Figure 14) that appears to align with the
known structural connectivity of the brain more closely
(see Figure 8). This alignment suggests an intrigu-
ing consistency that the simpler Stuart-Landau model
struggles to match, especially under the influence of
varying noise levels.

The envelope functional connectivity (FC) derived
from the Wilson-Cowan model presents a compelling
and reliable pattern, hinting at a greater degree of bio-
logical fidelity. This starkly contrasts with the Stuart-
Landau model, which requires cautious interpretation
when subjected to noise variations due to its propensity
for oversimplification that may overlook the subtleties of
brain dynamics. On the other hand, the Wilson-Cowan
model demonstrates robustness against such noise per-
turbations, solidifying its standing as a more suitable
candidate for modelling complex brain activities.

Furthermore, the Wilson-Cowan model’s potential
may be amplified when applied within a multi-frequency
framework, offering a fertile ground for advanced anal-
yses, such as characterizing the temporal evolution
of synchronicity via cross-correlation dynamics (CCD).
Such approaches could unveil the intricate temporal pat-
terns of synchronization that are vital for understanding
cognitive processes. Hence, the Wilson-Cowan model
may emerge not only as a more robust alternative to
its Stuart-Landau counterpart but also as a promising
substrate for future investigations into the oscillatory
nature of brain connectivity.

Our study does have several limitations that require
consideration. Firstly, our findings are contingent upon
various assumptions made during the model creation,
including the selection of parameter values such as
dt, noise, beta, simulation duration, and sample rate.
These assumptions may introduce biases or inaccuracies
into our results but were undeniably required given that
the original paper did not explicitly outline parameters
used for the majority of their simulations [1]. Addition-
ally, our study lacks a comprehensive comparison of our
model against a broader range of empirical evidence be-
yond the scope of the referenced paper, thus reducing
the generalisability of our findings. Furthermore, while

FIG. 17: Discrepancies in Metastability Across
Brain Network Models. For the Wilson-Cowan

model (bottom), metastability is relatively higher and
stable across different β values. It significantly drops
for lower β = 0.5 in the Stuart-Landau model (top).

our computational model demonstrates similarities to
observed oscillatory neuronal behaviour and allows for
predictions to be made, it simplifies the inherently intri-
cate complexity of the brain. This further perpetuates
the debate of whether computational models can indeed
encapsulate such intricacy.

V. CONCLUSION

In summary, our findings provide several key insights
into resting-state brain dynamics and functional con-
nectivity by building on the work conducted by Deco
[1]. Whilst we successfully replicated their conclusion
that tends towards a multiple-frequency model of brain
dynamics, we uncovered crucial oversights and possible
errors in their original work. Model behaviour was not
identical to that of Deco [1] and in some cases, envelope
functional connectivity showed an astounding correla-
tion compared to theirs. The possibilities of this dif-
ference remain endless, given that their original paper
failed to report many parameter values and coherent
model creation steps, as well as lacking in the provi-
sion of supplementary code. The assumptions made for
this computational model come with an inherent lack
of validity, which has demonstrated the little replicabil-
ity and validity that their original model holds. Learn-
ing from this, this report clearly outlined all procedures
taken to obtain the aforementioned results, as well as
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venturing beyond the paper and running model sim-
ulations for varying parameters, paying particular at-
tention to beta. It is evident that noise plays a much
larger factor than their research assumed, and future
research should aim to test how noise affects the relia-
bility of biomedical modelling. This research also uncov-
ered noticeable differences between Deco et al’s (2017)
model and the Wilson-Cowan model [11], the latter of
which proved much more representative of empirically
evidenced structural connectivity. Nevertheless, it is es-
sential to acknowledge that our findings were limited
by the assumptions made and the lack of generalizabil-
ity of our findings. Moving forward, we suggest future
research efforts focus on refining and expanding exist-
ing computational models, enhancing the accessibility
and replicability of scientific papers and models, and
conducting more neurophysiological studies to validate
theoretical scenarios proposed in computational mod-
els. These endeavours will be crucial in confirming the
accuracy of underlying assumptions and mechanisms,
ultimately enhancing the validity, replicability, and re-
liability of computational models in neuroscientific re-
search.
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