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The paper ”Neuronal Oscillations on Evolving Networks: Dynamics, Damage, Degradation, De-
cline, Dementia, and Death” by Goreily et al. (2020) delves into the effects of neurodegenerative
diseases on brain neural networks [1]. The degradation caused by these diseases affects not only the
nodes themselves but the strength of the connections between these nodes. The resulting connec-
tome evolves as the disease progresses, with damage caused by the disease affecting the spreading of
the disease, although minutely. The progression of the disease is modelled through both toxic pro-
tein accumulation and rest-state activity. In this paper, we attempt to recreate the results of their
study and delve further into extending their work and understanding the implications of their model.
Protein seed concentration and the diffusion model used both influence the damage accumulation in
the connectome. This is reflected in the decay in both neural activity within the neural mass model
as well as a decay in axonal velocity. Our findings reinstate that changes in edge weights have a
limited impact on the disease’s progression. However, dynamic biomarkers have been effective in

forecasting a significant cognitive decline over a decade.

I. INTRODUCTION
A. Biology

Alzheimer’s disease (AD) is a progressive neurodegen-
erative disorder leading to severe cognitive and func-
tional impairments. These symptoms are a result of
synaptic dysfunction and death of neurons, particu-
larly in the hippocampus and other parts of the cere-
bral cortex[2]. The major hallmarks of AD include the
pathological deposition of amyloid-beta (AS) plaques
and neurofibrillary tangles composed of tau protein in
the brain, both contributing to neuronal loss and brain
atrophy|3]

The onset of AD is typically in later life, however
there is evidence suggesting that prior to noticeable
symptoms, there are measureable changes to neural
biomarkers. Given evidence that that early interven-
tion results in improved patient outcomes[4], develop-
ing a reliable early indicator or AD is of huge clinical
importance.

B. Modelling

We replicate the model of Goriely et al[l], combin-
ing a long term protein spread model following a prion-
like paradigm with a neural biomarker model, prompted
by evidence linking degenerative diseases to misfolded
proteins[2], [3], [5]. Basing their initial conditions and
connections on the Budapest Reference Connectome
v3.04,[6] they modelled disease progression as an evolv-
ing undirected graph, and toxic protein accumulation
within nodes modelled using the Fisher-Kolmogorov-
Petrovsky-Piskunov equation. Change in damage was
quantified and modelled within individual nodes based
on toxic protein toxicity, toxic protein concentration,
and current node damage, modelling changes in con-

nectivity based on node damage. The nodes selected
for initial seeding with toxic protein were those repre-
senting the entorhinal area, based on research suggest-
ing it may be the initial locus of neurofibrillary tangles
caused by misfolded tau proteins withing Alzheimer’s
disease progression|[7]. Using structural biomarkers they
observed even unrealistically high damage made negligi-
ble difference to the rise in concentration over time. This
modelled the behaviour of pathogenic protein seeding,
by the time network damage hinders diffusion, the mis-
folded proteins have already infiltrated and begun self
replication. They were also able to model disease stag-
ing through the brain by noting the variation in levels of
damage between different regions over the time course of
the disease. At each node, they used a Wilson-Cowan|[8]
type neural mass model to model brain activity, with
nodes connected through a delay differential equation
with parameters chosen to approximate those in Deco
et al[9], due to their validation using resting state fMRI.
Modelling neural activity at intervals throughout dis-
ease progression, and monitoring biomarkers associated
with neurodegenerative disease in varying regions (the
overall power in the Gamma range, the average oscilla-
tory activity, and the metastability index). They were
able to model the decline of biomarkers, linking the phe-
nomenon to damage induced by toxic protein accumu-
lation, as well as observe their changes over disease pro-
gression. Our aim is to replicate the model, as well as
implement the more biologically accurate heterodimer
model of protein conversion[10]. We also aim to utilize
the model to investigate disease progression variation
between hemispheres.

C. Aims

e To replicate the neural mass and the resting-state
dynamics model and extend the findings of Goriely



et al. [1]

e To investigate how disease progression differs be-
tween hemispheres within the model

e To replicate the model of Fornari et al[10] which
also implemented a heterodimer model of protein
spread and compare it’s results to that of Goriely
et al’s model.

II. METHODS

One key characteristic of prion-like diseases involves
the propagation of misfolded proteins, which initially
affect a localized area and subsequently extend along
axonal pathways to pervade the entire brain [11].
This propagation process is conceptualized as diffusion
through the brain’s connectome, depicted as a weighted
undirected graph, denoted by G, consisting of N nodes
and E edges.

A. The connectivity-weighted graph

The initial connectome graph Gy is derived from diffu-
sion tensor magnetic resonance imaging data collected
from 418 healthy individuals participating in the Hu-
man Connectome Project. This extraction utilizes the
Budapest Reference Connectome v. 3.0 framework [12].
For illustrative purposes, a high-resolution connectome
with 1015 nodes and 37,477 edges is transformed into a
more accessible representation with 83 nodes and 1,130
edges (figure 1.

The structure of the connectome, G, reflects an undi-
rected updating weighted graph, observable at any time
T > 0, with Gy serving as the starting point. Each
node k represents a specific brain region in R,, where s
ranges from 1 to 7, including the frontal, parietal, tem-
poral, and occipital lobes, as well as the limbic system,
the basal ganglia, and the brain stem.

Incorporating the methodology established by
Goriely, Kuhl, and Bick [1], we first define the adja-
cency matrix W, which is a graph-based representation
of the connectome (Gr). The adjacency matrix is a
numerical representation where each element w;; de-
notes the weight of the connection between node i and
node j as in Figure (1). These weights are calculated
as w;; = mny;/ly;, with n;; indicating the number of
axonal fibres connecting the nodes—reflecting potential
pathways for neural communication—and ;; represent-
ing the physical distance between these nodes, which
influences signal transmission efficacy.

B. Graph Laplacian

This structured representation of brain connectivity
is fundamental in constructing the Graph Laplacian L,
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FIG. 1: The weighted connections in an 83-point
connectome network indicate the density of fibres
relative to the distances between nodes, with values
ranging from 0 (blue) to 9.8 (red). The representation
of different regions of interest as colour-coded nodes
connected by edges is also included.

formulated as L = p(D — W). Here, D is a diagonal
matrix with entries dy = Z;‘Vﬂ Wkj, each summing the
connection strengths wy; for node k across the network.
The factor p acts as a scalar adjusting the overall rate of
transport across the network, modifying how influences
propagate throughout the brain’s network structure.

The Graph Laplacian L itself is instrumental in an-
alyzing the network’s dynamics. It allows for the ex-
ploration of how disturbances spread and how the brain
maintains stability amidst these changes. It captures
not just the local connectivity by reflecting the con-
nection discrepancies at each node but also influences
global network properties by describing overall connec-
tivity and network responses to changes. Such analysis
is crucial for understanding both normal brain functions
and the impacts of neurodegenerative diseases.



C. Disease Progression

Goriely et al.’s [1] model quantified transport dynam-
ics along the graph edges as a ballistic movement, tem-
porally scaled using the velocity constant, p. This fol-
lows the prion-like paradigm, proposing nonlinear prop-
agation of self-replicating toxic protein, and chosen due
to previous success in using prion-like models to predict
Alzheimer’s disease volumetrics from MRI scans [13],
and previous work where they were able to predict tau
inclusions and amyloid deposits [14]. A representation
of the brain connectome with 83 nodes, complemented
by an adjacency matrix, is illustrated in (figure 1).

D. Protein Spread
1. Fisher-Kolmogorov-Petrovsky- Piskunov

We reproduced the spread of protein misfolding ac-
cording to the Fisher-Kolmogorov-Petrovsky-Piskunov
equation, selected by Goriely et al.[1] due to its ease of
computation and prior performance emulating clinically
observed Alzheimer’s disease (AD) progression.

N
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2. Heterodimer Model

The Heterodimer model is the simplest kinetic model
that accounts for the two possible configurations of the
protein [15].

p = 0.0lmm/years
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Through this model, we can describe the transition
from healthy proteins(p) to bonded proteins(pp) to
polymer fragments(p) as shown in equation (2). The
misfolded protein binds to healthy proteins at rate ki1/.
The bonded healthy protein is converted to an un-
healthy protein at rate kjo/, and the bonded proteins
fragment and become two separate misfolded protein
fragments at a rate of k1o [10].

p+P 2 54 p. (3)

This equation can be simplified to represent the transi-
tion of one healthy and one misfolded protein into two
misfolded proteins (See Equation 3). Using this simpli-
fication, a system of equations can be created defining

the evolution of concentration of unhealthy and healthy
proteins.

dp

dt:A~(D-Ap)+k0*k1'p*k12'p15 (4)

%:A'(D'Aﬁ)—krﬁ-l-km'pﬂ (5)
This system is shown in equations (4) and (5) where D is
the diffusion tensor defining the way the protein would
spread through the network. When applying this system
of equations to the Budapest connectome used within
the original paper, the model remains largely the same.
The only difference would be the replacement of the
equation that defines the unhealthy protein concentra-
tion (See Equation 1) with the new system that defines
both healthy and unhealthy protein concentrations. An
identical diffusion tensor is used for both types of pro-
tein concentration. Therefore, how they move through
the network are identical.

dp _
dt
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By making the assumption that initially p > p, we can
estimate the value of p in terms of kg, k1 and k12. Using
a Taylor series, we can then substitute p into equation
(4). This step creates equation (6), giving us the Fisher-
Kolmogorov model as it provides an equation for a single
misfolded protein concentration c. [1].

E. Protein concentration evolution

Damage to nodes was quantified using the variable
gk € [0,1] ( 0 healthy, 1 maximal damage), modelled
using the following equation:

1

B = 0.25years™! v = 0.125years™
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1. Seeding the graph

The initial setup had ¢;(0) = 0 for all nodes with the
exception of the seed nodes. The seed nodes, ca6(0) and
ces(0) were both set at 0.025. These seed nodes were
chosen due to their entorhinal location within the Bu-
dapest Connectome [6], being associated with the early

stages of dementia as well as misfolded tau aggregation
in AD.



2. Ewvolution of averaged toxic concentration and damage

Displaying the impact of different levels of damage
on the average concentration of toxic proteins and dam-
age in neural networks can deepen our understanding of
the biophysical processes of neurodegenerative diseases,
such as AD. By comparing the dynamic changes un-
der different levels of damage, it is possible to observe
how the disease affects the brain network over a long
time scale, including the accumulation of toxic protein
concentrations and network damage. This helps to un-
derstand how the disease progressively affects different
areas of the brain and leads to the decline of cognitive
functions.

To explore the evolutionary process, several key
model equations are involved, including the temporal
evolution of the toxic protein concentration equation
(1), the temporal evolution of the node damage equa-
tion (7), and the temporal evolution of edge weights
equation (8). ¢ is the concentration of toxic proteins
at node k, gy is the degree of damage at node k, Ly, are
the elements of the graph Laplacian, « is the conversion
rate and f is the toxicity coefficient. These are used in
a differential equation model to simulate the evolution
of the neural network over time.

F. Resting-state brain dynamics

In our investigation, we aimed to replicate the
methodologies utilized by Goriely et al. [1] for analyzing
the decline of cognitive functions via resting-state brain
dynamics. These dynamics unfold on timescales that
range from seconds for resting-state activity to years
for the progression of the disease. Accordingly, the
disease dynamics are considered quasi-stationary dur-
ing the short observational windows. At time t = T,
the connectome Gr is assumed to be constant despite
its being ever-changing, allowing for the examination of
resting-state activity.

Drawing on the foundational model presented by
Goriely et al., we engaged a neural-mass model at each
node, which simulates large-scale excitatory and in-
hibitory neural interactions akin to the Wilson-Cowan
framework, as cited in their study [9, 16]. The intrinsic
dynamics of the uncoupled nodes exhibit characteristics
of a supercritical Hopf bifurcation, leading to an ex-
ponential decay of activity as the system approaches a
stable fixed point. This behaviour is captured in figure
(2), which displays the exponential decay of excitatory
and inhibitory amplitudes for node 5 when it is uncou-
pled, oscillating around a frequency of approximately
40 Hz. The condition of each node k is described by a
complex variable zj, with the fundamental component
reflecting excitatory population activity and the imagi-
nary component corresponding to inhibitory population
activity.

In our simulations of the network G, weights W =
W (T) facilitate the interaction between neural popula-
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FIG. 2: Temporal evolution of excitatory (top panel)
and inhibitory (bottom panel) amplitudes for node 5
in an uncoupled state, demonstrating an exponential
decay with predominant oscillations at approximately
40 Hz. This reflects the decay dynamics characteristic
of a supercritical Hopf bifurcation in a neural mass
model.

tions via the excitatory component as in equation (10).
The coupling term may allow the network of nodes to
have sustained oscillation, as can be seen from the ac-
tivity plots and the phase plots in figure (3). The inter-
action is further modulated by the sigmoidal function
S(x) = 1/(1 4 e~ ) through a delay differential equa-
tion.

N
= F(z1) + S | Re | D wijz; (¢ = 7iy) (9)
j=1
X
% =AX) — wp Yy — Xp(X7 +Y3)
N (10)
+ kS Z Wi (t — Thy)
j=1
oY,
87: =\ + wp Xg — V(X2 +Y2) (11)

The internal dynamics of each node are described by
F(zr) = 2 (Aiwg —|2x]?), with a decay rate A = —0.01,
intrinsic frequencies wy = w + d = 40 Hz +0, where
0 are randomly sampled from a normal distribution
with zero mean and a variance of 0.1 Hz. The coupling
gain k = 10 and delays 73; are scaled according to node
distances within the connectome data. These parame-
ters are selected to mirror the neural-mass model, which
aligns with fMRI observations during rest states [9].

1. Discretising the delays

In the resting-state brain dynamics simulations, an
important consideration is the communication delay be-
tween different regions of the brain. These delays de-
pend on the length of axonal fibres and the signal trans-
mission speed, which was considered to be 1.5 m/s, as
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FIG. 3: Top panels display the excitatory (left) and
inhibitory (right) neural activities for node 5 after
introducing coupling to the system, illustrating the
transition to sustained oscillations indicative of
network interactivity. The bottom panels show the
phase plots for nodes 5 (left) and 68 (right), with node
5 exhibiting complex oscillatory patterns, while node
68 demonstrates a limit cycle, providing insights into
the diverse dynamical states achievable within the
network. These behaviours emphasize the critical role
of coupling in facilitating rich dynamical regimes
across the brain’s connectome.

referenced by Goriely et al. [1]. The delay distribution
provides insight into the typical timeframes for neural
signal propagation across the connectome, as evidenced
in figure (4). To simplify the computational model with-
out losing essential dynamics, these delays were dis-
cretized into 40 distinct categories. This discretization
process allows for incorporating realistic transmission
times into the coupling term as 7j; while simulating the
excitatory signal as in the equation (10). However, dur-
ing the investigation of the resting state dynamics after
each year of disease progression, the speed and the fiber
length were kept constant.

With the original graph Gy, collective oscillations are
noticed, and in the absence of coupling, the amplitudes
decline exponentially, displaying a frequency near 40 Hz.

G. Dynamic biomarkers

In our endeavour to replicate the decline in cognitive
functions described in [1], we reimplemented three dy-
namic indices derived from a 10-second simulation of
the resting state brain dynamics, encapsulated in the
equation (9). These indices are:
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FIG. 4: Analysis of transmission delays in the brain’s
connectome. The top panel illustrates the probability
density function of inter-nodal delays, providing an
overview of prevalent transmission times within the
network. The bottom panel presents a heatmap of
these delays post-discretization into 40 distinct
temporal categories, essential for modeling the
dynamics of neural communication with a degree of
computational efficiency.

(a) Overall power in the gamma range, expressed as:

P(T) = [ PSD((:) (@) as, (12)

where PSD is the power spectral density of (z) =
+ Zj\;l Re(z;), and T denotes the Gamma fre-
quency band.

(b) Average Oscillatory Activity, determined by:

1 N 1 tsim
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representing the mean signal magnitude over all
nodes throughout the simulation duration.

(c) Metastability Index, calculated as:

N
Z (12 (1) (14)

where o7 signifies the variance of the signal’s mag-
nitude within the simulation time frame.

For each regional set Ry, these measures Ps, A,, and
By are summed over their respective nodes and normal-
ized accordingly. These biomarkers are known to be
indicative of cognitive faculties and have links to neu-
rodegenerative diseases [17].

H. Homeostasis

To replicate the original study’s findings on neural
network homeostasis, the dynamic nature of neuronal
connections was taken into account. These connections
are not static but rather adapt in response to ongo-
ing neural dynamics, contributing to the maintenance



of network homeostasis [18]. We reimplemented a sim-
ple model of homeostatic adaptation, which maintained
the average connectome coupling over time [1]. Given a
homeostatic adaptation parameter £ € [0, 1], the initial
weight matrix is W(0), and the scaled weight matrix at
time 7" is updated according to:

T [W(T - 1)]
wir) = |a-g+¢ (N ) [ we - as)
for T =1, 2, ... where | -|| denotes the matrix norm.

¢ the parameter that ranges between 0 and 1 scales
the connectome weights annually, adjusting the network
changes that accompany disease progression. At £ = 0,
the network undergoes no homeostatic changes, and al-
terations are exclusively due to the disease’s impact.
At £ = 1, the network fully adapts, maintaining an in-
variant average coupling weight throughout the disease
progression. This adaptation ensures that changes in
coupling strength within one region due to the disease
are balanced by compensatory changes in other regions,
thus preserving the overall coupling strength of the net-
work.

This approach facilitates reproduction of the original
weighted connectome, essential for simulating resting-
state dynamics that reflect the network’s adaptation to
neurodegenerative processes. The interplay between the
evolving structural network and the associated cognitive
functionalities could thus be scrutinized throughout the
disease’s progression.

III. RESULTS

A. Evolution of averaged toxic concentration and
damage

By exploring the averaged toxic protein concentra-
tions, node damage and edge weights in this system
(seeing Fig. 5), it is possible to observe how node dam-
age affects disease progression. The red line W can be
interpreted as representing the extent of network de-
struction, with the dashed line indicating rapid network
degradation within 15 years (8 = 4,v = 2), employing
unrealistic parameters, while the solid line illustrates
severe damage (8 = 1/4,v = 1/8). Over time, it is ob-
servable that the trajectories of protein concentration
change in scenarios of severe damage closely align with
those of undamaged networks (8 = 0,7 = 0), suggest-
ing negligible differences between them. By setting the
damage parameters to unrealistic values for compari-
son with the severely damaged case, it becomes evident
that network destruction does not significantly impact
the increase in toxic protein concentration, indicating
that network destruction does not markedly slow the
progression of the disease but merely delays the onset
to some extent [1].
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FIG. 5: The evolution of toxic protein concentration,
node damage and edge weight over time with different
degrees of damage.

B. Disease Progression

When recreating the model, The same trends in re-
gional damage can be observed as that in the paper.
The limbic region receives the most damage initially due
to the entorhinal nodes becoming located in the limbic
"Super region’. This damage is then quickly seen in the
temporal and parietal regions due to their nodes adja-
cency to the limbic region. However, the limbic region’s
damage increase is slower compared to the other regions.
Likely due to the lower edge weights of the connections
going to these nodes. (See Figure 6)
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FIG. 6: This figure demonstrates the increase in
damage over time using the original model found in
the paper.

C. Heterodimer model

For further analysis, we also compared the results of
the Fisher-Kolmogorov-Petrovsky-Piskunov model with
that of a simple Heterodimer model. Those models
displayed similar results except with a slower overall



growth rate of damage in all regions. The model also
differed in how one region’s damage affected the next.
In the original model, the damage in each region started
increasing in a similar time period, whereas when look-
ing at the Heterodimer model, a slight difference in rate
at which damage grows can be observed, this causes.
Prior damage can be seen to have a greater effect on
the rate at which future damage occurs, resulting in a
"flatter’ graph in Figure (7).

1.0
— frontal
parietal
0.8 occipital
—— temporal
— limbic
0641 bas.al ganglia
g —— brain stem
©
§
00.4
0.2
0.0
0 5 10 15 20 25 30
Time (yr)

FIG. 7: The above figure shows the damage in each
region using the Heterodimer model. The ¢’ value in
the original model is replaced with the p in the
Heterodimer model.

D. Protein Seeding

Two key factors to consider when seeding misfolded
proteins into the model are the location of the seeded
nodes and the concentration of the proteins seeded.
The first factor we explored was the concentration of
the seeded protein. We compared the results of set-
ting the seeded nodes to a protein concentration of 0.1
through to 1, this was compared against each other and
then to the default concentration in the original model
(0.025). As expected, a higher initial protein concen-
tration caused the damage in the network to propagate
faster than a lower one. The rate of damage growth re-
mained consistent when comparing regions against one
another, no matter the protein concentration. (See Fig-
ures 8 and 9)

E. Inter-hemisphere variation

Damage progression is varied across nodes (figure 10),
with the variation in time of onset of damage, rates of
change and final severity, with a variation seen within
the connectome as a whole (A) as well as within sin-
gle regions (B, C, D). Our results seem to indicate a
generally higher and faster increase in damage in the
left hemisphere nodes within a region. This divergence
varied regionally however, in limbic nodes there is clear
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FIG. 8: This figure demonstrates the damage over time
in the network on a per-region basis. The seed protein
concentrated is also changed in this figure with more
opaque colours having higher seed concentrations.
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FIG. 9: This figure demonstrates the effect the seeded
protein concentration has on the global damage growth
within the network.

separation between left and right hemisphere nodes (fig-
ure 10 C), however in temporal and basal ganglia nodes
(figure 10 B and D) there was far more overlap. The
pattern of damage can vary considerably between dif-
ferent hemispheres, even within the same region and
presumably equivalent nodes.

The difference in damage between pairs of equivalent
nodes between hemispheres (figure 11) shows a fairly
consistent pattern, with divergence rising to a peak,
then lowering again as the damage approached the the-
oretical maximum of 1. In most cases, that damage gen-
erally accumulates faster in the left hemisphere than the
right, though there are many nodes where the opposite
is true.

F. Cognitive decline after physical damage

In the numerical implementation of dynamic
biomarker calculations within neural networks, the code
utilizes advanced signal processing techniques. The
Gamma range power as in equation (12) is estimated
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FIG. 11: Difference in damage between equivalent
nodes across hemispheres: Red lines represent where
damage is greater in the left hemisphere, whereas blue
indicates the opposite. The peak divergence for each
pair of nodes is indicated by the dots.

through the Welch method, an approach that segments
the signal, applies windowing, and computes an aver-
aged periodogram to derive the power spectral density
(PSD). This PSD is then interpolated and integrated
across a specified frequency band to calculate PT. For
the average oscillatory activity as in equation (13), the

trapezoidal rule integrates the absolute values of the
neural activity signal over time. The metastability in-
dex as in equation (14) (BT) is computed as the mean
variance of the signal magnitude, reflecting the tempo-
ral fluctuations in neural activity. Both global and re-
gional metrics are extracted, providing a comprehensive
analysis of network dynamics through these biomarkers,
which are pivotal in understanding the functional con-
nectivity and stability of the brain under various condi-
tions.
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FIG. 12: Evolution of Dynamic Brain Biomarkers Over
Time. This figure displays the mean and standard
deviation of dynamic biomarkers, representing Gamma
range power (PT), average oscillatory activity (AT),
and metastability index (BT) across years for three
different intrinsic frequency realizations. A stable
profile is observed for up to 20 years, beyond which a
marked decline correlates with physical damage in the
brain. The early decline in oscillatory activity within
the occipital lobe suggests its critical role in disease
onset, which is different from the original findings [1].

The average amplitude provides an overview of neural
activity levels, and the metastability index is interpreted
as a proxy for information processing [19]. To assess the
disease’s influence on neural dynamics, we replicated the
simulations on an evolving brain connectome at incre-
mental time points T as in equation (9). The method-
ological details are accessible in the supplementary text
of Goriely et al.’s work [1]. The figure (12) portrays the
mean values and standard deviations of these dynami-
cal markers, normalized against the baseline of a healthy
brain at T=0 across 6 realizations. This visualization re-
veals a parallel trend to the original study, maintaining
stability for up to 20 years into the disease’s progres-



sion. Although the brain endures substantial structural
damage by this juncture, as illustrated in our figure (5),
the brain exhibits prolonged resilience to such structural
damage.

However, beyond this period, there is an evident shift
in dynamics, observable in the diminished capacity of
nodes to sustain oscillatory activities, a phenomenon
our reproduction accurately reflects with a more pro-
nounced variability as noted in the lowest panel of the
figure (12). Localized dynamical markers elucidate the
disparity in how the disease’s spread alters neural dy-
namics, with our data revealing a decrease in oscillatory
activity within the occipital lobe that heralds the on-
set of global dynamic shifts. Unlike the original study,
where the decline in the temporal lobe’s oscillatory ac-
tivity precedes global alterations, which may be because
of the discrepancy in the structural connectivity matrix
we worked with as in figure (1). These observations indi-
cate that the rate of damage accumulation and network
topology play critical roles in determining the threshold
for oscillatory dynamics deterioration.

G. Adaptation slows Cognitive Decline

In this study, the resting-state dynamics were repli-
cated, as delineated by equation (9), with the inclusion
of a homeostatic adjustment mechanism described in
equation (15). The resultant data, illustrated in fig-
ure (13), delineate the evolution of the mean amplitude
A(T) as the disease progresses across a spectrum of val-
ues for the adaptation parameter £. It was observed
that increasing homeostatic control did not precipitate
a change in the initial stage (around year 13), where os-
cillatory activity begins to decline. Instead, it appeared
to mitigate the rate of neural degeneration. However,
it was assumed that when cognitive functions begin to
diminish past a specific threshold, such deceleration in
disease progression could potentially also delay the com-
mencement of the critical transition phase.

Additionally, figure (13) shows the mean oscillation
amplitude within the limbic lobe. Notably, a decline in
oscillatory activity globally preceded the limbic region,
irrespective of the adaptation parameter’s magnitude.
This pattern persisted even with maximal adaptation
(£ = 1), wherein the aggregate oscillatory activity re-
mained relatively unchanged within the observed time-
frame of 30 years. This suggests a compensatory up-
regulation in other cerebral regions to maintain near-
steady overall neural activity, which is consistent with
the original work [1]. Hence, within the confines of this
rudimentary model of adaptation, the fluctuation in os-
cillation amplitude may act as an early indicator of the
overarching transition in the system’s dynamics, regard-
less of the degree of homeostatic adaptation.
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FIG. 13: Variations in oscillation amplitude correlate
with changes in the homeostasis parameter based on 3
realizations. Increasing homeostatic modifies the
progression of amplitude decline without affecting the
initial timing of this decrease. The global mean
oscillation amplitude (grey/black lines) shows how the
slope varies for different homeostasis parameters; in the
extreme case £ = 1, the oscillation amplitude remains
as in figure (12). In a similar pattern, the average
amplitude observed in the limbic lobe, represented by
blue lines, demonstrates consistent behaviour. For
reference, C(T) is shown as the solid grey line.

H. Decay in speed slows Global Cognitive Decline

Assuming that the speed is dependent on fibre con-
nectivity between two nodes, our aim here was to cap-
ture the decay in speed within a neural network sys-
tem. Assuming, that the speed is dependent on fiber
connectivity between two nodes represented by a se-
ries of weight matrices across multiple time points. The
method operates by computing the Euclidean norms of
consecutive weight matrices similar to equation (15),
thereby quantifying the magnitude of change in neu-
ral connectivity between time points. By comparing
these norms, a decay rate is derived, reflecting the rel-
ative change in connectivity strength over time. This
decay rate is then utilized to adjust the speed of trans-
mission between the nodes, influencing the dynamics of
the neural network model. Overall, the method offered
no drastic shift in the decline of the average oscillatory
amplitude for the global as well as the limbic region, as
shown in figure (14).

IV. DISCUSSION

Decay in axonal velocity Our model assumes a
constant axonal transmission speed (1.5 m/s), even as
structural and functional degradation occurs. How-
ever, emerging research suggests that this speed may
decline as diseases like Alzheimer’s progress, influenc-
ing the delays calculated between nodes in our neural
network model as in figure (4). Notably, the reduc-
tion of axonal velocity is a recognized consequence of
Alzheimer’s, elucidated in the recent study by [Author
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FIG. 14: Alterations in oscillation amplitude are
observed with and without the decay in the speed
based on 3 realizations. The mean oscillation
amplitude (black/gray lines) globally and for region
limbic (blue/light blue) does not vary much after
including the decay in the speed when compared to
speed being constant as in the original paper. For
reference, C(T) is shown by the solid grey line.

et al., 2023], which provides a detailed account of how
Alzheimer’s affects axonal velocity and its underlying
mechanisms [20]. Complementary findings from animal
models also support this hypothesis, as observed in a
murine Alzheimer’s model, which showed a correlation
between the presence of the disease and a diminished
conduction speed [21]. Moreover, observations of de-
creased axonal velocity in peripheral human nerves fur-
ther corroborate this assertion, as documented in the
literature [22]. To incorporate these findings into our
model, we propose modifying the constant axonal trans-
mission speed to a variable that declines over time in
correlation with disease progression. Such modification
can be expressed through a set of equations governing
the decay in transmission speed along with adaptation.
Advancing on the results in figure 14, this integrated
model can effectively capture the dynamic changes in
neural communication as the disease advances. This
refinement may provide a more accurate simulation of
the brain’s connectivity and could shed light on the
timing and extent of cognitive decline. By incorpo-
rating a decaying speed factor into the delay calcula-
tions—effectively a function of both path length and
a dynamically reducing velocity parameter—the model
will provide a more nuanced depiction of neurodegener-
ative progression, potentially improving the prediction
accuracy of cognitive impairment stages.”
Hemispheric Differences Variation within a re-
gion was not surprising given the varied edges and
weights of nodes. The rise then fall of damage asymme-
try also makes sense given how we quantified damage,
with equivalent nodes converging as theoretical maxi-
mum damage is approached due to the lagging hemi-
sphere catching up. Distribution of peaks and damage
progression show different patterns between the hemi-
spheres generally and also within individual regions.
This is interesting, as the seed nodes were the entorhi-
nal nodes in both hemispheres. Asymmetric progres-
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sion of Alzheimer’s is well established with divergent
rates of atrophy seen by Bugiani et al[23], with left
leading progression more common, though there were
cases of the opposite. This demonstrated that either
hemisphere can lead in asymmetrical progression. Our
results aligned, also showed a general trend of faster dis-
ease progression in the left hemisphere compared to the
right, with exception a variety of exceptions. Tremblay
et al[24] corroborated left hemisphere bias in cases with
significant asymmetry, though most cases did present
with significant asymmetry. However, this comparison
covered the hemispheres as a whole and individual re-
gions were often noted to be different. Results (10 show
broad variation in damage within a single region and
between equivalent nodes of opposite hemispheres (fig-
ure [fig:hemisphere'plot]) it would be interesting to
compare our findings for individual nodes to biological
equivalents, for a more detailed analysis.

The budapest connectome [6] is constructed from an
amalgamation of scans, so the distinct individual differ-
ences within people may have been lost. Given this
limitation there may be some utility in running our
model on data taken from single individuals. Tremblay
et al[24] also found that divergence increases with pro-
gression, contradicting our results (figure 11). This may
be due to the limitations of our model, which quantifies
damage somewhat simplistically. Alternatively, it may
be due to the fact that out model has a specified sim-
ulation time span of 30 years, in contrast, people may
simply die when disease severity becomes great enough.
If patients die before the lagging hemisphere catches up,
this would lead to a pattern of increased divergence un-
til death. We could extend the model by implementing
a way to estimate time of death following disease onset,
and see if the asymmetric difference in damage until
time of death more closely models the progression in
real patients.

Brain Connectome The results of our replication
of Goriely et al.’s model align with those in the origi-
nal paper [1]. However, the connectome used has great
importance in modelling disease progression. Using
a different connectome could cause different dynamics
depending on the edge weights and node categoriza-
tion used. Therefore, experimenting with other connec-
tomes could help make the model more generalisable
as it would highlight any discrepancies that occur due
to the connectome data. Some such connectomes are
the HCP Lifespan connectomes. Connectomes such as
these could allows us the model the differences in dis-
ease progression between age groups [25]. Another key
consideration is the directionality that is inherent in ax-
onal bundles. This would cause asymmetry within the
weight matrix and therefore greatly effect the dynamics
occurring within neurodegenerative disease progression.
However, no human brain connectomes currently exist
that are suitable for used in this model. A directional
mouse connectome exists that has been used for mod-
elling protein transport but to truly understand human
neurodegenerative diseases a human connectome would
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be best [26].

Regional Network Damage and Protein Seed-
ing An important factor to consider when looking at
regional network damage are the location of the seed
nodes. The entorhinal nodes were used as the seed
nodes due to them exhibiting the earliest signs of dam-
age from Alzheimer’s disease [27]. Experimenting with
other seed nodes may be valuable in providing informa-
tion on the progression of damage and disease in other
neurodegenerative disorders. This model is based upon
that in Weickermen et al [14], who were able to model
the prgression of other neurodegenerative diseased such
as Parkinson’s disease and amyotrophic lateral sclerosis
(ALS) through modelling the spread of a-synuclein, and
TDP-43, respectively.

Many neurogenerative diseases such as ALS act be-
yond the brain, causing deterioration of motor neurons
within nerve cells and the spinal cord [28]. Given the
success of [14] at modelling ALS within the brain, ex-
tending the model to also include nodes for the spinal
cord or peripheral nerves, with the aim to better model
ALS progression, could provide beneficial information
on the progression of the disease.

Another possible scenario that could be explored
would be the possibility of nodes in multiple regions
being seed nodes, which would inevitably alter disease
progression. It would allow us to model different dis-
eases more appropriately. This could potentially prove
more accurate when modelling a disease like Hunting-
ton’s, which is unlikely to start in a single location due
to its nature as a genetic disease and the ubiquity of
the expression of the toxic protein Huntingtin. De-
spite these differences, Huntington’s progression shows
some evidence for prion-like mechanisms[29], and ar-
eas of high Huntingtin concentration have already been
located within the striatum (specifically the caudate
nucleus and putamen)[30] that show promise as seed
nodes. Applying this information to the model would
allow us to gain a better insight into how the regional
damage changes as the disease progresses.

V. CONCLUSION

We were able to replicate the model and key findings
for Goriely et al [1]. This included their findings that
adge weight alteration over the course of disease pro-
gression had little impact on overall disease progression
(figure 5). We were also able to replicate the disease
staging they observed using their model (figure 6) as
well as when implementing a heterodimer model of pro-
tein spread (figure 7). Fornari et al’s[10] heterodimer
model did not track limbic nodes, so by using the re-
gions used in Goriely et al[l], we were able to show that
limbic disease progression precedes all other regions in
a heterodimer model too. Similarly to Goriely et al,
we found a decline in neural biomarkers with disease
progression (figure 12)

Investigating the difference in damage between hemi-
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spheres we were able to find variation in disease progres-
sion within nodes of a region and between regions (figure
10) broadly in line with biological findings. Differences
between equivalent nodes in different hemispheres were
observed, demonstrating the model is capable of captur-
ing asymmetric progression (figure 11). Analysis of the
dynamic biomarkers revealed their predictive capacity
for a substantial decline in cognitive functions spanning
a ten-year period.

Overall, the model created by Goriely et al[l] pro-
vided insights into the dynamics that occur within neu-
rodegenerative diseases and how they affect brain func-
tion [1]. By experimenting with their model, we were
able to both confirm their findings and obtain some
novel insights, as well as potential avenues for further
exploration.
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